Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 21

Answer

\[ 80=(\vec{w} \times \vec{v})\cdot\vec{u} \]

Work Step by Step

To evaluate $ (\vec{w} \times \vec{v})\cdot \vec{u}$, we can use the following formula. \[ (\vec{w} \times \vec{v})\cdot\vec{u} =\left|\begin{array}{ccc} u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3} \end{array}\right| \] It's given that \[ \begin{array}{l} \vec{w}=\hat{\jmath}+5 \hat{k}=\langle 0,1,5\rangle\\ \vec{v}=4 \hat{\imath}+\hat{\jmath}-3 \hat{k}=\langle 4,1,-3\rangle \\ \vec{u}=2 \hat{\imath}-3 \hat{\jmath}+\hat{k}=\langle 2,-3,1\rangle \end{array} \] And then \[ \begin{aligned} (\vec{w} \times \vec{v})\cdot \vec{u} &=\left|\begin{array}{ccc} 2 & -3 & 1 \\ 4 & 1 & -3 \\ 0 & 1 & 5 \end{array}\right| \\ &=0\left|\begin{array}{cc} -3 & 1 \\ 1 & -3 \end{array}\right|-1\left|\begin{array}{cc} 2 & 1 \\ 4 & -3 \end{array}\right|+5\left|\begin{array}{cc} 2 & -3 \\ 4 & 1 \end{array}\right| \\ &=5(2+12)-(-6-4) \\ &=70+10=80 \end{aligned} \] We get that \[ 80=(\vec{w} \times \vec{v})\cdot\vec{u} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.