Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 32

Answer

\[ \frac{1}{6}(\vec{u} \cdot(\vec{w} \times \vec{v}) 1=v \]

Work Step by Step

$V=\frac{1}{3}(\text { area of base })$ (height) Area of base $=\|\vec{v} \times \vec{w}\|\frac{1}{2} \quad$ (area of triangle) \[ \|\vec{u}\| \cos (\theta)=\text { height } \] The perpendicular from the vertex to the base is along the $\vec{w} \times \vec{v}$ direction. $\theta$ is the angle between $\vec{u} \times \vec{v}$ and $\vec{w}$ \[ \begin{array}{c} V=\frac{1}{2} \cdot \frac{1}{3} \cdot\|\vec{w} \times \vec{v}\|\|\vec{u}\| \cos (\theta)=|\vec{u} \cdot(\vec{v} \times \vec{w})|\frac{1}{6} \\ \therefore \frac{1}{6}(\vec{u} \cdot(\vec{v} \times \vec{w}) 1=v \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.