Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 26

Answer

\[ 45=V \]

Work Step by Step

If $\vec{v}, \vec{w}$ and $\vec{u}$ are non-zero vectors in 3d-space, then the volume of the shape that has $\vec{v}, \vec{u}$ and $\vec{w}$ as adjacent edges is: \[ V=| (\vec{w} \times \vec{v})\cdot\vec{u} |=a b s\left|\begin{array}{lll} u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3} \end{array}\right| \] It's given that: \[ \begin{array}{l} \vec{w}=\hat{\imath}+2 \hat{\jmath}+4 \hat{k}=\langle 1,2,4\rangle \\ \vec{v}=4 \hat{\imath}+5 \hat{\jmath}+\hat{k}=\langle 4,5,1\rangle \\ \vec{u}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}=\langle 3,1,2\rangle \end{array} \] And then, \[ \begin{aligned} 2(-5+8) \vec{u} \cdot(\vec{w} \times \vec{v})+3(-2+20)-(-1+16) &=\left|\begin{array}{ccc} 3 & 1 & 2 \\ 4 & 5 & 1 \\ 1 & 2 & 4 \end{array}\right| \\ &=3\left|\begin{array}{cc} 5 & 1 \\ 2 & 4 \end{array}\right|-\left|\begin{array}{cc} 4 & 1 \\ 1 & 4 \end{array}\right|+2\left|\begin{array}{cc} 4 & 5 \\ 1 & 2 \end{array}\right| \\ &=-(16-1)+(-5+8)2+(-2+20) 3\\ &45=-15+6+54 \end{aligned} \] So, the volume of the parallepiped is: \[ 45 =V \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.