Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 28

Answer

$c) 3$ $d)-3$ $e)-3$ $f) 0$ $a)-3$ b) 3

Work Step by Step

It's given that $3=(\vec{w} \times \vec{v})\cdot \vec{u} $ a) Since $-\vec{w} \times \vec{v}=\vec{v} \times \vec{w}$, we get that: \[ \begin{aligned} -3=\vec{u} \cdot(\vec{w} \times \vec{v}) &=\vec{u} \cdot(-\vec{v} \times \vec{w}) \\ &=-\vec{u} \cdot(\vec{v} \times \vec{w}) \end{aligned} \] b) Since $\vec{b} \cdot \vec{a}=\vec{a} \cdot \vec{b}$, we get that \[ 3=\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{v} \times \vec{w}) \cdot \vec{u} \] From the property \[ \vec{u} \cdot(\vec{w} \times \vec{v})=\vec{v} \cdot(\vec{u} \times \vec{w})=\vec{w} \cdot(\vec{v} \times \vec{u}) \] We get that: c) $3=\vec{w} \cdot(\vec{u} \times \vec{v})=\vec{u} \cdot(\vec{v} \times \vec{w})$ d) $-3=-\vec{v} \cdot(\vec{u} \times \vec{w})=-\vec{u} \cdot(\vec{w} \times \vec{v})=\vec{v} \cdot(\vec{w} \times \vec{u})$ e) $-3=(\vec{u} \times \vec{w}) \cdot \vec{v}=\vec{v} \cdot(\vec{u} \times \vec{w})=-\vec{u} \cdot(\vec{v} \times \vec{w})$ f) $(\vec{w} \times \vec{w})\cdot \vec{v} =0$ because $\vec{w} \times \vec{w}=0$ for all vectors.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.