Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 82

Answer

$\frac{1}{3}$

Work Step by Step

Given: $f(x)=x^3+3\sin x+2\cos x$ To find $(f^{-1})'(2)$, we need to find $f^{-1}(2)$ and $f'(f^{-1}(2))$. Find $f^{-1}(2)$: $f(0)=0^3+3\sin 0+2\cos 0$ $f(0)=0+3\cdot 0+2\cdot 1$ $f(0)=2$ $f^{-1}(2)=0$ Find $f'(0)$: $f'(x)=\frac{d}{dx}(x^3+3\sin x+2\cos x)$ $f'(x)=3x^2+3\cos x+2(-\sin x)$ $f'(x)=3x^2+3\cos x-2\sin x$ $f'(0)=3\cdot 0^2+3\cos 0-2\sin 0$ $f'(0)=3\cdot 0+3\cdot 1-2\cdot 0$ $f'(0)=3$ Using the Formula in Exercise 83, $(f^{-1})'(2)=\frac{1}{f'(f^{-1}(2))}=\frac{1}{f'(0)}=\frac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.