Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 76

Answer

$\frac{{dy}}{{dt}} = - \frac{1}{{\sqrt {1 - {t^2}} \sqrt {1 - {{\left( {{{\sin }^{ - 1}}t} \right)}^2}} }}$

Work Step by Step

$$\eqalign{ & y = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}t} \right) \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{{\cos }^{ - 1}}\left( {{{\sin }^{ - 1}}t} \right)} \right] \cr & {\text{Use }}\frac{d}{{dt}}\left[ {{{\cos }^{ - 1}}u} \right] = - \frac{1}{{\sqrt {1 - {t^2}} }}\frac{{du}}{{dt}},{\text{ let }}u = {\sin ^{ - 1}}t \cr & \frac{{dy}}{{dt}} = - \frac{1}{{\sqrt {1 - {{\left( {{{\sin }^{ - 1}}t} \right)}^2}} }}\frac{d}{{dt}}\left[ {{{\sin }^{ - 1}}t} \right] \cr & {\text{Computing the derivative}} \cr & \frac{{dy}}{{dt}} = - \frac{1}{{\sqrt {1 - {{\left( {{{\sin }^{ - 1}}t} \right)}^2}} }}\left( {\frac{1}{{\sqrt {1 - {t^2}} }}} \right) \cr & {\text{Simplify}} \cr & \frac{{dy}}{{dt}} = - \frac{1}{{\sqrt {1 - {t^2}} \sqrt {1 - {{\left( {{{\sin }^{ - 1}}t} \right)}^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.