Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 85

Answer

$\frac{1}{2}$

Work Step by Step

Given: $f(x)=x+e^x$ To find $(f^{-1})'(1)$, we need to find $f^{-1}(1)$ and $f'(f^{-1}(1))$. Find $f^{-1}(1)$: $f(0)=0+e^0$ $f(0)=0+1$ $f(0)=1$ $f^{-1}(1)=0$ Find $f'(0)$: $f'(x)=\frac{d}{dx}(x+e^x)$ $f'(x)=1+e^x$ $f'(0)=1+e^0$ $f'(0)=1+1$ $f'(0)=2$ Using the Formula in Exercise 83, $(f^{-1})'(1)=\frac{1}{f'(f^{-1}(1))}=\frac{1}{f'(0)}=\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.