Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 79

Answer

$f'(x)=-\frac{x\arcsin x}{\sqrt{1-x^2}}+1$

Work Step by Step

Given: $f(x)=\sqrt{1-x^2}\arcsin x$ Let $u=\sqrt{1-x^2}$ and $v=\arcsin x$. Find $u'$ using the chain rule: $u'=\frac{d}{dx}(\sqrt{1-x^2})=\frac{d}{dx}((1-x^2)^{1/2})= \frac{1}{2}(1-x^2)^{-1/2}\frac{d}{dx}(1-x^2)=\frac{1}{2\sqrt{1-x^2}}(-2x)=\frac{-x}{\sqrt{1-x^2}}$ Find $v'$: $v'=\frac{d}{dx}(\arcsin x)=\frac{1}{\sqrt{1-x^2}}$ Using the product rule, $f'(x)=\frac{d}{dx}(u\cdot v)$ $=u'v+uv'$ $=\frac{-x}{\sqrt{1-x^2}}\cdot \arcsin x+\sqrt{1-x^2}\cdot \frac{1}{\sqrt{1-x^2}}$ $=-\frac{x\arcsin x}{\sqrt{1-x^2}}+1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.