Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 75

Answer

$y' = {\sin ^{ - 1}}x$

Work Step by Step

$$\eqalign{ & y = x{\sin ^{ - 1}}x + \sqrt {1 - {x^2}} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {x{{\sin }^{ - 1}}x + \sqrt {1 - {x^2}} } \right] \cr & y' = \frac{d}{{dx}}\left[ {x{{\sin }^{ - 1}}x} \right] + \frac{d}{{dx}}\left[ {\sqrt {1 - {x^2}} } \right] \cr & {\text{Use the product rule}} \cr & y' = x\frac{d}{{dx}}\left[ {{{\sin }^{ - 1}}x} \right] + {\sin ^{ - 1}}x\frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ {\sqrt {1 - {x^2}} } \right] \cr & {\text{Compute deivatives}} \cr & y' = x\left( {\frac{1}{{\sqrt {1 - {x^2}} }}} \right) + {\sin ^{ - 1}}x\left( 1 \right) + \frac{{ - 2x}}{{2\sqrt {1 - {x^2}} }} \cr & {\text{Simplify}} \cr & y' = {\sin ^{ - 1}}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.