Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 80

Answer

$f'(x)=\frac{2x-1}{1+(x^2-x)^2}$

Work Step by Step

Let $u=x^2-x$. Then, $\frac{du}{dx}=2x-1$. We have $f(x)=\arctan(u)$. Using the chain rule, $f'(x)=\frac{df}{dx}$ $=\frac{df}{du}\cdot \frac{du}{dx}$ $=\frac{1}{1+u^2}\cdot ({2x-1})$ $=\frac{1}{1+(x^2-x)^2}\cdot (2x-1)$ $=\frac{2x-1}{1+(x^2-x)^2}$ Thus, $f'(x)=\frac{2x-1}{1+(x^2-x)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.