Answer
$f'(x)=\frac{2x-1}{1+(x^2-x)^2}$
Work Step by Step
Let $u=x^2-x$. Then, $\frac{du}{dx}=2x-1$.
We have $f(x)=\arctan(u)$.
Using the chain rule,
$f'(x)=\frac{df}{dx}$
$=\frac{df}{du}\cdot \frac{du}{dx}$
$=\frac{1}{1+u^2}\cdot ({2x-1})$
$=\frac{1}{1+(x^2-x)^2}\cdot (2x-1)$
$=\frac{2x-1}{1+(x^2-x)^2}$
Thus, $f'(x)=\frac{2x-1}{1+(x^2-x)^2}$