Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 225: 78

Answer

$y'=\frac{-1}{x^2+1}$

Work Step by Step

Let $u=\frac{1-x}{1+x}$. We have $y=\arctan(u)$. Find $\frac{du}{dx}$ using the Quotient Rule: $\frac{du}{dx}=\frac{\frac{d}{dx}(1-x)\cdot (1+x)-(1-x)\cdot \frac{d}{dx}(1+x)}{(1+x)^2}$ $=\frac{-1(1+x)-(1-x)1}{(1+x)^2}$ $=\frac{-1-x-1+x}{(1+x)^2}$ $=\frac{-2}{(1+x)^2}$ Find $\frac{dy}{dx}$ using the chain rule: $\frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx}$ $=\frac{d}{du}(\arctan(u))\cdot \frac{-2}{(1+x)^2}$ $=\frac{1}{1+u^2}\cdot \frac{-2}{(1+x)^2}$ $=\frac{1}{1+(\frac{1-x}{1+x})^2}\cdot \frac{-2}{(1+x)^2}$ $=\frac{1}{1+\frac{(1-x)^2}{(1+x)^2}}\cdot \frac{-2}{(1+x)^2}$ $=\frac{-2}{(1+x)^2+(1-x)^2}$ $=\frac{-2}{1+2x+x^2+1-2x+x^2}$ $=\frac{-2}{2x^2+2}$ $=\frac{-1}{x^2+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.