Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 4

Answer

$g'\left( t \right) = 5 + 8t$

Work Step by Step

$$\eqalign{ & g\left( t \right) = 5t + 4{t^2} \cr & {\text{Differentiate the function}} \cr & g'\left( t \right) = \frac{d}{{dt}}\left[ {5t + 4{t^2}} \right] \cr & \cr & {\text{Use the sum rule for differentiation }} \cr & \frac{d}{{dt}}\left[ {f\left( t \right) + g\left( t \right)} \right] = \frac{d}{{dt}}f\left( t \right) + \frac{d}{{dt}}g\left( t \right) \cr & {\text{then}} \cr & g'\left( t \right) = \frac{d}{{dt}}\left[ {5t} \right] + \frac{d}{{dt}}\left[ {4{t^2}} \right] \cr & \cr & {\text{Use the constant multiple rule}} \cr & g'\left( t \right) = 5\frac{d}{{dt}}\left[ t \right] + 4\frac{d}{{dt}}\left[ {{t^2}} \right] \cr & \cr & {\text{Apply the rules: }}\frac{d}{{dt}}\left[ {{t^n}} \right] = n{t^{n - 1}}{\text{ and }}\frac{d}{{dt}}\left[ t \right] = 1 \cr & g'\left( t \right) = 5\left( 1 \right) + 4\left( {2t} \right) \cr & {\text{Simplify}} \cr & g'\left( t \right) = 5 + 8t \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.