Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 7

Answer

$f'\left( t \right) = - 2{e^t}$

Work Step by Step

$$\eqalign{ & f\left( t \right) = - 2{e^t} \cr & {\text{Differentiate the function}} \cr & f'\left( t \right) = \frac{d}{{dt}}\left[ { - 2{e^t}} \right] \cr & {\text{Use the constant multiple rule}} \cr & f'\left( t \right) = - 2\frac{d}{{dt}}\left[ {{e^t}} \right] \cr & {\text{Apply }}\frac{d}{{dx}}\left[ {{e^x}} \right] = {e^x} \cr & f'\left( t \right) = - 2\left( {{e^t}} \right) \cr & f'\left( t \right) = - 2{e^t} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.