Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 5

Answer

$f'\left( x \right) = 75{x^{74}} - 1$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^{75}} - x + 3 \cr & {\text{Differentiate the function}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{75}} - x + 3} \right] \cr & \cr & {\text{Use the sum diffence rules for differentiation }} \cr & \frac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \frac{d}{{dx}}f\left( x \right) \pm \frac{d}{{dx}}g\left( x \right) \cr & {\text{then}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{75}}} \right] - \frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ 3 \right] \cr & \cr & {\text{Compute the derivatives}}{\text{, }}\frac{d}{{dx}}\left[ x \right] = 1{\text{ and }}\frac{d}{{dx}}\left[ c \right] = 0,{\text{ so}} \cr & f'\left( x \right) = 75{x^{75 - 1}} - 1 + 0 \cr & {\text{Simplify}} \cr & f'\left( x \right) = 75{x^{74}} - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.