Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 12

Answer

$V'\left( t \right) = - \frac{3}{5}{t^{ - 8/5}} + 4{t^3}$

Work Step by Step

$$\eqalign{ & V\left( t \right) = {t^{ - 3/5}} + {t^4} \cr & {\text{Differentiate the function}} \cr & V'\left( t \right) = \frac{d}{{dt}}\left[ {{t^{ - 3/5}} + {t^4}} \right] \cr & {\text{Use the sum diffence rules for differentiation }} \cr & V'\left( t \right) = \frac{d}{{dt}}\left[ {{t^{ - 3/5}}} \right] + \frac{d}{{dt}}\left[ {{t^4}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dt}}\left[ {{t^n}} \right] = n{t^{n - 1}} \cr & V'\left( t \right) = - \frac{3}{5}{t^{ - 3/5 - 1}} + 4{t^{4 - 1}} \cr & {\text{Simplify}} \cr & V'\left( t \right) = - \frac{3}{5}{t^{ - 8/5}} + 4{t^3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.