Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 10

Answer

$r'\left( z \right) = - 5{z^{ - 6}} - \frac{1}{2}{z^{ - 1/2}}$

Work Step by Step

$$\eqalign{ & r\left( z \right) = {z^{ - 5}} - {z^{1/2}} \cr & {\text{Differentiate the function}} \cr & r'\left( z \right) = \frac{d}{{dz}}\left[ {{z^{ - 5}} - {z^{1/2}}} \right] \cr & {\text{Use the sum diffence rules for differentiation }} \cr & r'\left( z \right) = \frac{d}{{dz}}\left[ {{z^{ - 5}}} \right] - \frac{d}{{dz}}\left[ {{z^{1/2}}} \right] \cr & {\text{Apply the rules: }}\frac{d}{{dt}}\left[ {{z^n}} \right] = n{t^{n - 1}} \cr & r'\left( z \right) = - 5{z^{ - 6}} - \frac{1}{2}{z^{ - 1/2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.