Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 15

Answer

$y' = 2 + \frac{1}{{2\sqrt x }}$

Work Step by Step

$$\eqalign{ & y = 2x + \sqrt x \cr & {\text{Rewrite the function}} \cr & y = 2x + {x^{1/2}} \cr & {\text{Differentiate the function}} \cr & y' = \frac{d}{{dx}}\left[ {2x + {x^{1/2}}} \right] \cr & {\text{Use the sum diffence rules for differentiation }} \cr & y' = \frac{d}{{dx}}\left[ {2x} \right] + \frac{d}{{dx}}\left[ {{x^{1/2}}} \right] \cr & {\text{Use the constant multiple rule}} \cr & y' = 2\frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ {{x^{1/2}}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}} \cr & y' = 2\left( 1 \right) + \frac{1}{2}{x^{1/2 - 1}} \cr & y' = 2 + \frac{1}{2}{x^{ - 1/2}} \cr & {\text{Rewrite}} \cr & y' = 2 + \frac{1}{{2{x^{1/2}}}} \cr & y' = 2 + \frac{1}{{2\sqrt x }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.