Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 11

Answer

$f'\left( x \right) = \frac{3}{2}{x^{1/2}} - 3{x^{ - 4}}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^{3/2}} + {x^{ - 3}} \cr & {\text{Differentiate the function}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{3/2}} + {x^{ - 3}}} \right] \cr & {\text{Use the sum diffence rules for differentiation }} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{x^{3/2}}} \right] + \frac{d}{{dx}}\left[ {{x^{ - 3}}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}} \cr & f'\left( x \right) = \frac{3}{2}{x^{3/2 - 1}} - 3{x^{ - 3 - 1}} \cr & {\text{Simplify}} \cr & f'\left( x \right) = \frac{3}{2}{x^{1/2}} - 3{x^{ - 4}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.