Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 435: 15

Answer

$-\frac{(x+1) }{(x-1) }$.

Work Step by Step

The given expression is $=\frac{\frac{1}{x-1}+1}{\frac{1}{x+1}-1}$ Multiply the numerator and the denominator by $(x-1)(x+1)$. $=\frac{(x-1)(x+1)}{(x-1)(x+1)}\cdot \frac{\frac{1}{x-1}+1}{\frac{1}{x+1}-1}$ Use the distributive property. $=\frac{(x-1)(x+1) \cdot \frac{1}{x-1}+(x-1)(x+1) }{(x-1)(x+1) \cdot \frac{1}{x+1}-(x-1)(x+1) }$ Simplify. $=\frac{(x+1) +(x-1)(x+1) }{(x-1)-(x-1)(x+1) }$ Factor out common terms in the numerator and denominator. $=\frac{(x+1) [1+(x-1)] }{(x-1)[1-(x+1)] }$ $=\frac{(x+1) [1+x-1] }{(x-1)[1-x-1] }$ $=\frac{(x+1) [x] }{(x-1)[-x] }$ Cancel common terms. $=\frac{(x+1) }{-(x-1) }$ $=-\frac{(x+1) }{(x-1) }$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.