Answer
$ \frac{4-x}{5x-3}$.
Work Step by Step
The given expression is
$=\frac{8x^{-2}-2x^{-1}}{10x^{-1}-6x^{-2}}$
Multiply the numerator and the denominator by $x^{2}$.
$=\frac{x^2}{x^2}\cdot \frac{8x^{-2}-2x^{-1}}{10x^{-1}-6x^{-2}}$
Use the distributive property.
$= \frac{x^2(8x^{-2})-x^2(2x^{-1})}{x^2(10x^{-1})-x^2(6x^{-2})}$
Simplify.
$= \frac{8x^{-2+2}-2x^{-1+2}}{10x^{-1+2}-6x^{-2+2}}$
$= \frac{8x^{0}-2x^{1}}{10x^{1}-6x^{0}}$
$= \frac{8-2x}{10x-6}$
Factor out $2$ from the numerator and denominator.
$= \frac{2(4-x)}{2(5x-3)}$
Simplify.
$= \frac{4-x}{5x-3}$.