Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 435: 7

Answer

$ \frac{4-x}{5x-3}$.

Work Step by Step

The given expression is $=\frac{8x^{-2}-2x^{-1}}{10x^{-1}-6x^{-2}}$ Multiply the numerator and the denominator by $x^{2}$. $=\frac{x^2}{x^2}\cdot \frac{8x^{-2}-2x^{-1}}{10x^{-1}-6x^{-2}}$ Use the distributive property. $= \frac{x^2(8x^{-2})-x^2(2x^{-1})}{x^2(10x^{-1})-x^2(6x^{-2})}$ Simplify. $= \frac{8x^{-2+2}-2x^{-1+2}}{10x^{-1+2}-6x^{-2+2}}$ $= \frac{8x^{0}-2x^{1}}{10x^{1}-6x^{0}}$ $= \frac{8-2x}{10x-6}$ Factor out $2$ from the numerator and denominator. $= \frac{2(4-x)}{2(5x-3)}$ Simplify. $= \frac{4-x}{5x-3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.