Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 435: 20

Answer

$\dfrac{4x}{2x^2+x+3}$

Work Step by Step

Let's note: $$E=\dfrac{\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}}{\dfrac{x-1}{x+1}+\dfrac{x+2}{x-1}}.$$ Multiply both numerator and denominator by $(x-1)(x+1)$ and simplify: $$\begin{align*} E&=\dfrac{(x-1)(x+1)}{(x-1)(x+1)}\cdot \dfrac{\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}}{\dfrac{x-1}{x+1}+\dfrac{x+2}{x-1}}\\ &=\dfrac{(x-1)(x+1)\dfrac{x+1}{x-1}-(x-1)(x+1)\dfrac{x-1}{x+1}}{(x-1)(x+1)\dfrac{x-1}{x+1}+(x-1)(x+1)\dfrac{x+2}{x-1}}\\ &=\dfrac{(x+1)^2-(x-1)^2}{(x-1)^2+(x+2)(x+1)}\\ &=\dfrac{x^2+2x+1-x^2+2x-1}{x^2-2x+1+x^2+3x+2}\\ &=\dfrac{4x}{2x^2+x+3}. \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.