Answer
$\frac{y+x}{y-x}$.
Work Step by Step
The given expression is
$=\frac{\frac{1}{x}+\frac{1}{y}}{\frac{1}{x}-\frac{1}{y}}$
Multiply the numerator and the denominator by $xy$.
$=\frac{xy}{xy} \cdot \frac{\left ( \frac{1}{x}+\frac{1}{y}\right )}{\left (\frac{1}{x}-\frac{1}{y}\right )}$
Use the distributive property.
$=\frac{xy\cdot \frac{1}{x}+xy\cdot \frac{1}{y}}{xy\cdot \frac{1}{x}-xy\cdot \frac{1}{y}}$
Simplify.
$=\frac{y+x}{y-x}$.