Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 435: 8

Answer

$ \frac{4-x}{5x-3}$.

Work Step by Step

The given expression is $=\frac{12x^{-2}-3x^{-1}}{15x^{-1}-9x^{-2}}$ Multiply the numerator and the denominator by $x^{2}$. $=\frac{x^2}{x^2}\cdot \frac{12x^{-2}-3x^{-1}}{15x^{-1}-9x^{-2}}$ Use the distributive property. $= \frac{x^2(12x^{-2})-x^2(3x^{-1})}{x^2(15x^{-1})-x^2(9x^{-2})}$ Simplify. $= \frac{12x^{-2+2}-3x^{-1+2}}{15x^{-1+2}-9x^{-2+2}}$ $= \frac{12x^{0}-3x^{1}}{15x^{1}-9x^{0}}$ $= \frac{12-3x}{15x-9}$ Factor out $3$ from the numerator and denominator. $= \frac{3(4-x)}{3(5x-3)}$ Simplify. $= \frac{4-x}{5x-3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.