Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 435: 19

Answer

$\dfrac{4x}{x^2+4}$

Work Step by Step

Let's note: $$E=\dfrac{\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{x-2}{x+2}+\dfrac{x+2}{x-2}}.$$ Multiply both numerator and denominator by $(x-2)(x+2)$ and simplify: $$\begin{align*} E&=\dfrac{(x-2)(x+2)}{(x-2)(x+2)}\cdot \dfrac{\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{x-2}{x+2}+\dfrac{x+2}{x-2}}\\ &=\dfrac{(x-2)(x+2)\dfrac{x+2}{x-2}-(x-2)(x+2)\dfrac{x-2}{x+2}}{(x-2)(x+2)\dfrac{x-2}{x+2}+(x-2)(x+2)\dfrac{x+2}{x-2}}\\ &=\dfrac{(x+2)^2-(x-2)^2}{(x-2)^2+(x+2)^2}\\ &=\dfrac{x^2+4x+4-x^2+4x-4}{x^2-4x+4+x^2+4x+4}\\ &=\dfrac{8x}{2x^2+8}\\ &=\dfrac{8x}{2(x^2+4)}\\ &=\dfrac{4x}{x^2+4}. \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.