Answer
$\frac{x^2+y}{y(y+1)}$.
Work Step by Step
The given expression is
$=\frac{\frac{x}{y}+\frac{1}{x}}{\frac{y}{x}+\frac{1}{x}}$
Multiply the numerator and the denominator by $xy$.
$=\frac{xy}{xy} \cdot \frac{\left ( \frac{x}{y}+\frac{1}{x}\right )}{\left (\frac{y}{x}+\frac{1}{x}\right )}$
Use the distributive property.
$=\frac{xy\cdot \frac{x}{y}+xy\cdot \frac{1}{x}}{xy\cdot \frac{y}{x}+xy\cdot \frac{1}{x}}$
Simplify.
$=\frac{x^2+y}{y^2+y}$.
Factor the denominator.
$=\frac{x^2+y}{y(y+1)}$.