Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Mid-Chapter Check Point - Page 447: 2

Answer

$ \frac{3(x-2)}{(x-1)}$.

Work Step by Step

The given expression is $\Rightarrow \frac{2x^2-8x-11}{x^2+3x-4}+\frac{x^2+14x-13}{x^2+3x-4}$ $\Rightarrow \frac{2x^2-8x-11+x^2+14x-13}{x^2+3x-4}$ Add like terms. $\Rightarrow \frac{3x^2+6x-24}{x^2+3x-4}$ Factor out $3$ from the numerators. $\Rightarrow \frac{3(x^2+2x-8)}{x^2+3x-4}$ Factor the numerator and the denominator as shown below. $\Rightarrow x^2+2x-8$ Rewrite the middle term $2x$ as $4x-2x$. $\Rightarrow x^2+4x-2x-8$ Group terms. $\Rightarrow (x^2+4x)+(-2x-8)$ Factor each group. $\Rightarrow x(x+4)-2(x+4)$ Factor out $(x+4)$. $\Rightarrow (x+4)(x-2)$ $\Rightarrow x^2+3x-4$ Rewrite the middle term $2x$ as $4x-x$. $\Rightarrow x^2+4x-x-4$ Group terms. $\Rightarrow (x^2+4x)+(-x-4)$ Factor each group. $\Rightarrow x(x+4)-1(x+4)$ Factor out $(x+4)$. $\Rightarrow (x+4)(x-1)$ Back substitute all factors into the fraction. $\Rightarrow \frac{3(x+4)(x-2)}{(x+4)(x-1)}$ Cancel common terms. $\Rightarrow \frac{3(x-2)}{(x-1)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.