Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Mid-Chapter Check Point - Page 447: 18

Answer

$ 16x^2 -8x+4-\frac{2}{2x+1}$

Work Step by Step

The given expression is $(64x^3+4)\div(4x+2)$ Rewrite the expression as $(64x^3+0x^2+0x+4)\div(4x+2)$ $\begin{matrix} & 16x^2 & -8x &+4 & & \leftarrow &Quotient\\ &-- &-- &--&--& \\ 4x+2) &64x^3&+0x^2&+0x&+4 & \\ & 64x^3 & +32x^2 & & & \leftarrow &16x^2(4x+2) \\ & -- & -- & & & \leftarrow &subtract \\ & 0 & -32x^2 & +0x & & \\ & & -32x^2 & -16x & & \leftarrow & -8x(4x+2) \\ & & -- & -- & & \leftarrow & subtract \\ & & 0&16x &+4 & \\ & & & 16x& +8 & \leftarrow & 4(4x+2) \\ & & & -- & -- & \leftarrow & subtract \\ & & & 0 & -4 & \leftarrow & Remainder \end{matrix}$ The answer is $\Rightarrow Quotient + \frac{Remainder}{Divisor}$ $\Rightarrow 16x^2 -8x+4-\frac{4}{4x+2}$ Factor out $2$ from the denominator. $\Rightarrow 16x^2 -8x+4-\frac{4}{2(2x+1)}$ Simplify. $\Rightarrow 16x^2 -8x+4-\frac{2}{2x+1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.