Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Mid-Chapter Check Point - Page 447: 10

Answer

$ \frac{10}{(x+2)(x-2)}$.

Work Step by Step

The given expression is $=\frac{3}{x-2}-\frac{2}{x+2}-\frac{x}{x^2-4}$ Factor $x^2-4$. $=x^2-2^2$ Use the algebraic expression $a^2-b^2=(a+b)(a-b)$. $=(x+2)(x-2)$ Substitute the factor into the given expression. $=\frac{3}{x-2}-\frac{2}{x+2}-\frac{x}{(x+2)(x-2)}$ LCM of all the denominators $=(x+2)(x-2)$ $=\frac{(x+2)}{(x+2)} \cdot \frac{3}{x-2}-\frac{(x-2)}{(x-2)} \cdot \frac{2}{x+2}-\frac{x}{(x+2)(x-2)}$ Simplify. $= \frac{3(x+2)}{(x+2)(x-2)}-\frac{2(x-2)}{(x+2)(x-2)}-\frac{x}{(x+2)(x-2)}$ $= \frac{3(x+2)-2(x-2)-x}{(x+2)(x-2)}$ Simplify. $= \frac{3x+6-2x+4-x}{(x+2)(x-2)}$ $= \frac{10}{(x+2)(x-2)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.