Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Mid-Chapter Check Point - Page 447: 15

Answer

$\frac{5x}{(x-6)(x-1)(x+4)}$.

Work Step by Step

The given expression is $\Rightarrow \frac{x}{x^2-7x+6}-\frac{x}{x^2-2x-24}$ Factor each denominator as shown below. $\Rightarrow x^2-7x+6$ Rewrite the middle term $-7x$ as $-6x-x$. $\Rightarrow x^2-6x-x+6$ Group terms. $\Rightarrow (x^2-6x)+(-x+6)$ Factor each group. $\Rightarrow x(x-6)-1(x-6)$ Factor out $(x-6)$. $\Rightarrow (x-6)(x-1)$ and $\Rightarrow x^2-2x-24$ Rewrite the middle term $-2x$ as $-6x+4x$. $\Rightarrow x^2-6x+4x-24$ Group terms. $\Rightarrow (x^2-6x)+(4x-24)$ Factor each group. $\Rightarrow x(x-6)+4(x-6)$ Factor out $(x-6)$. $\Rightarrow (x-6)(x+4)$ Back substitute into the fractions. $\Rightarrow \frac{x}{(x-6)(x-1)}-\frac{x}{(x-6)(x+4)}$ The LCD of the denominators is $(x-6)(x-1)(x+4)$. $\Rightarrow \frac{x(x+4)}{(x-6)(x-1)(x+4)}-\frac{x(x-1)}{(x-6)(x-1)(x+4)}$ Add both numerators because denominators are equal. $\Rightarrow \frac{x(x+4)-x(x-1)}{(x-6)(x-1)(x+4)}$ Use the distributive property. $\Rightarrow \frac{x^2+4x-x^2+x}{(x-6)(x-1)(x+4)}$ Add like terms. $\Rightarrow \frac{5x}{(x-6)(x-1)(x+4)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.