Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Mid-Chapter Check Point - Page 447: 17

Answer

$x+2$.

Work Step by Step

The given expression is $=\frac{x^2-x-6}{x+1}\div \left ( \frac{x^2-9}{x^2-1} \cdot \frac{x-1}{x+3} \right )$ Factor $x^2-x-6$. Rewrite the middle term $-x$ as $-3x+2x$. $=x^2-3x+2x-6$ Group terms. $=(x^2-3x)+(2x-6)$ Factor each term. $=x(x-3)+2(x-3)$ Factor out $(x-3)$. $=(x-3)(x+2)$. Factor $x^2-9$. $=x^2-3^2$ Use algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(x+3)(x-3)$ Factor $x^2-1$. $=x^2-1^2$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(x+1)(x-1)$ Substitute all factors into the given expression. $=\frac{(x-3)(x+2)}{x+1}\div \left ( \frac{(x+3)(x-3)}{(x+1)(x-1)} \cdot \frac{x-1}{x+3} \right )$ Cancel common terms $=\frac{(x-3)(x+2)}{x+1}\div \left ( \frac{x-3}{x+1} \right )$ $=\frac{(x-3)(x+2)}{x+1}\times \frac{x+1}{x-3} $ Cancel common terms. $=x+2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.