Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Mid-Chapter Check Point - Page 447: 11

Answer

$\frac{2(x-3)}{x-1}$.

Work Step by Step

The given expression is $=\frac{3x^2-7x-6}{3x^2-13x-10}\div \frac{2x^2-x-1}{4x^2-18x-10}$ Factor $3x^2-7x-6$. Rewrite the middle term $-7x$ as $-9x+2x$. $=3x^2-9x+2x-6$ Group terms. $=(3x^2-9x)+(2x-6)$ Factor each term. $=3x(x-3)+2(x-3)$ Factor out $(x-3)$. $=(x-3)(3x+2)$. Factor $3x^2-13x-10$. Rewrite the middle term $-13x$ as $-15x+2x$. $=3x^2-15x+2x-10$ Group terms. $=(3x^2-15x)+(2x-10)$ Factor each term. $=3x(x-5)+2(x-5)$ Factor out $(x-5)$. $=(x-5)(3x+2)$. Factor $2x^2-x-1$. Rewrite the middle term $-x$ as $-2x+x$. $=2x^2-2x+x-1$ Group terms. $=(2x^2-2x)+(x-1)$ Factor each term. $=2x(x-1)+1(x-1)$ Factor out $(x-1)$. $=(x-1)(2x+1)$. Factor $4x^2-18x-10$. Rewrite the middle term $-18x$ as $-20x+2x$. $=4x^2-20x+2x-10$ Group terms. $=(4x^2-20x)+(2x-10)$ Factor each term. $=4x(x-5)+2(x-5)$ Factor out $(x-5)$. $=(x-5)(4x+2)$. $=2(x-5)(2x+1)$. Substitute all factors into the given expression. $=\frac{(x-3)(3x+2)}{(x-5)(3x+2)}\div \frac{(x-1)(2x+1)}{(x-5)(4x+2)}$ $=\frac{(x-3)(3x+2)}{(x-5)(3x+2)}\times \frac{2(x-5)(2x+1)}{(x-1)(2x+1)}$ Cancel common terms. $=\frac{2(x-3)}{x-1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.