Answer
$-3$
Work Step by Step
In the parentheses, $\log_{125}5=A$ means, by definition, that $125^{A}=5$
$125=5^{3}$, so
$(5^{3})^{A}=5\displaystyle \quad\Rightarrow 5^{3A}=5^{1}\quad\Rightarrow\quad A=\frac{1}{3}$
$\log_{5}125=3$, because $5^{3}=125$
So, we have$\displaystyle \quad x=(\frac{1}{3})^{3}=3^{-3}$
Finally,
$\log_{3}x=\log_{3}3^{-3}=-3$