Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.6 Solving Exponential Equations and Logarithmic Equations - 12.6 Exercise Set - Page 826: 94

Answer

$x=\displaystyle \frac{3}{2}$

Work Step by Step

$3^{2x-1}=3^{2x}\displaystyle \cdot 3^{-1}=\frac{1}{3}\cdot 3^{2x}$, so the equation is $ 3^{2x}-\displaystyle \frac{1}{3}\cdot 3^{2x}=18\qquad$ ... factor out $3^{2x}$ $3^{2x}(1-\displaystyle \frac{1}{3})=18$ $ 3^{2x}(\displaystyle \frac{2}{3})=18\qquad$ ... multiply with $\displaystyle \frac{3}{2}$ $3^{2x}=\displaystyle \frac{18\cdot 3}{2}$ $3^{2x}=27$ $ 3^{2x}=3^{3}\qquad$ ... apply the exponential equality principle $2x=3$ $x=\displaystyle \frac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.