Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.6 Solving Exponential Equations and Logarithmic Equations - 12.6 Exercise Set - Page 826: 93

Answer

$x=-\displaystyle \frac{1}{3}$

Work Step by Step

Recognize powers of 3 $((3^{4})^{x-2})((3^{3})^{x+1})=(3^{2})^{2x-3} \quad$ ... apply $(a^{m})^{n}a^{mn}$ $ 3^{4x-8}\cdot 3^{3x+3}=3^{4x-6} \quad$ ... apply $a^{m}a^{n}=a^{mn}$ $3^{4x-8+3x+3}=3^{4x-6}$ $ 3^{7x-5}=3^{4x-6}\qquad$ ... apply the exponential equality principle $7x-5=4x-6$ $3x=-1$ $x=-\displaystyle \frac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.