Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.6 Solving Exponential Equations and Logarithmic Equations - 12.6 Exercise Set - Page 826: 87

Answer

$x\displaystyle \in\{\frac{1}{2},5000\}$

Work Step by Step

In order for the equation to be defined, $\left\{\begin{array}{llll} 2x\geq 0 & \Rightarrow & x\geq 0 & \\ \log 2x\geq 0 & \Rightarrow & 2x\geq 1 & \Rightarrow x\geq\frac{1}{2}\\ 2x\gt 0 & \Rightarrow & x\gt 0 & \end{array}\right. \qquad(*)$ Rewrite $\sqrt{2x}$ as $(2x)^{1/2}$, and apply $ \quad\log_{a}M^{p}=p\cdot\log_{a}M$ $\displaystyle \frac{1}{2}\log 2x=\sqrt{\log 2x}\qquad$ ... let $t=\log 2x$ $\displaystyle \frac{1}{2}t=\sqrt{t}\qquad$ ... square both sides $\displaystyle \frac{1}{4}t^{2}=t$ $t^{2}-4t=0$ $t(t-4)=0$ Solutions for t: $t=0,t=4.$ Bring back x $\left[\begin{array}{lll} \log 2x=0 & ... & \log 2x=4\\ 2x=10^{0} & & 2x=10^{4}\\ x=1/2 & & x=5000 \end{array}\right]$ Both satisfy (*), so both are valid solutions.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.