Answer
$x\in\{-1,-3\}$
Work Step by Step
On the LHS, apply $a^{m}\cdot a^{n}=a^{m+n}.$
On the RHS, recognize 27 as $3^{3},\displaystyle \quad\frac{1}{27}=3^{-3}$
$ 3^{x^{2}+4x}=3^{-3}\qquad$ ... apply the exponential equality principle
$x^{2}+4x=-3$
$x^{2}+4x+3=0$
$(x+1)(x+3)=0$
$x=-1, x=-3$