Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.6 Solving Exponential Equations and Logarithmic Equations - 12.6 Exercise Set - Page 826: 72

Answer

$ \displaystyle \frac{-x^{2}+4x+2}{x^{2}-2x}$

Work Step by Step

To subtract, expand each algebraic fraction to the common denominator. LCD= $x(x-2)$ $\displaystyle \frac{3}{x-2}-\frac{x+1}{x}= \displaystyle \frac{3}{x-2}\cdot\frac{x}{x}-\frac{x+1}{x}\cdot\frac{x-2}{x-2}$ $=\displaystyle \frac{3x-(x+1)(x-2)}{x(x-2)}$ $=\displaystyle \frac{3x-(x^{2}-x-2)}{x(x-2)}$ $=\displaystyle \frac{3x-x^{2}+x+2}{x(x-2)}$ $=\displaystyle \frac{-x^{2}+4x+2}{x^{2}-2x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.