Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 787: 45

Answer

$ a.\quad h$ is one-to-one $ b.\quad$ $h^{-1}(x)=-10-x$

Work Step by Step

$ a.\quad$ The function is linear, non-constant. Its graph is an oblique line that passes the horizontal line test (It is impossible to draw a horizontal line that intersects a function's graph more than once.) It is one-to-one and has an inverse. $ b.\quad$ To find a formula for the inverse, 1. Replace $h(x)$ with $y.$ $y=-10-x$ 2. Interchange $x$ and $y$. (This gives the inverse function.) $x=-10-y$ 3. Solve for $y.$ $x+10=-y$ $-x-10=y$ 4. Replace $y$ with $h^{-1}(x)$ . (This is inverse function notation.) $h^{-1}(x)=-10-x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.