Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 787: 17

Answer

$a.\quad(f\circ g)(1) = 2$ $b.\displaystyle \quad(g\circ f)(1) = \frac{1}{2}$ $c.\displaystyle \quad (f\circ g)(x) = \frac{2}{\sqrt{x}} $ $d.\displaystyle \quad (g\circ f)(x) = \frac{1}{2\sqrt{x}}$

Work Step by Step

$(f\circ g)(x)=f[g(x)]=\sqrt{4g(x)}$ $= \sqrt{4\cdot\frac{1}{x}} $ $= \displaystyle \frac{2}{\sqrt{x}} \qquad ... \quad(c)$ $(f\displaystyle \circ g)(1)= \frac{2}{\sqrt{1}} =2 \qquad ... \quad(a)$ $(g\displaystyle \circ f)(x)=g[f(x)]=\frac{1}{f(x)}$ $= \displaystyle \frac{1}{\sqrt{4x}} $ $= \displaystyle \frac{1}{2\sqrt{x}} \qquad ... \quad(d)$ $(g\displaystyle \circ f)(1)=\frac{1}{2\sqrt{1}}=\frac{1}{2} \qquad ... \quad(b)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.