Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.1 Composite Functions and Inverse Functions - 12.1 Exercise Set - Page 787: 20

Answer

$a.\quad(f\circ g)(1) = 22$ $b.\quad(g\circ f)(1) = \sqrt{26}$ $c.\quad (f\circ g)(x) = x+21$ $d.\quad (g\circ f)(x) = \sqrt{x^{2}+25}$

Work Step by Step

$(f\circ g)(x)=f[g(x)]=[g(x)]^{2}+8$ $= |x+17|+4 $ since the domain of g is $[-17,\infty)$ (and of $f\circ g$,) we can drop the absolute value brackets, because the expression $(x+17)$ is not negative on the domain. $(f\circ g)(x)=x+21$ $\qquad ... \quad(c)$ $(f\circ g)(1)= 1+21 =22 \qquad ... \quad(a)$ $(g\circ f)(x)=g[f(x)]=\sqrt{f(x)+17}$ $= \sqrt{x^{2}+8+17} $ $= \sqrt{x^{2}+25} \qquad ... \quad(d)$ $(g\circ f)(1)= \sqrt{1^{2}+25} =\sqrt{26} \qquad ... \quad(b)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.