Answer
$a.\quad(f\circ g)(1) = 2$
$b.\quad(g\circ f)(1) = 4$
$c.\quad (f\circ g)(x) = \sqrt{x+3}$
$d.\quad (g\circ f)(x) = \sqrt{x}+3$
Work Step by Step
$(f\circ g)(x)=f[g(x)]=\sqrt{g(x)}$
$= \sqrt{x+3} \qquad ... \quad(c)$
$(f\circ g)(1)=\sqrt{1+3}=2 \qquad ... \quad(a)$
$(g\circ f)(x)=g[f(x)]=[f(x)]+3$
$= \sqrt{x}+3 \qquad ... \quad(d)$
$(g\circ f)(1)=\sqrt{1}+3=4 \qquad ... \quad(b)$