Answer
$a.\quad 0$
$b.\quad 20$
$c.\quad x^{2}-1$
$d.\quad x^{2}+8x+11$
Work Step by Step
$(f\circ g)(x)=f[g(x)]=[g(x)]+4$
$=x^{2}-5+4$
$=x^{2}-1 \qquad ... \quad(c)$
$(f\circ g)(1)=1^{2}-1=0 \qquad ... \quad(a)$
$(g\circ f)(x)=g[f(x)]=[f(x)]^{2}-5$
$=(x+4)^{2}-5$
$=x^{2}+8x+16-5$
$=x^{2}+8x+11 \qquad ... \quad(d)$
$(g\circ f)(1)=1^{2}+8(1)+11=20 \qquad ... \quad(b)$