Answer
$a.\quad 1/9$
$b.\quad 3$
$c.\displaystyle \quad\frac{1}{(x+2)^{2}}$
$d.\displaystyle \quad \frac{1}{x^{2}}+2$
Work Step by Step
$(f\displaystyle \circ g)(x)=f[g(x)]=\frac{1}{[g(x)]^{2}}$
$= \displaystyle \frac{1}{(x+2)^{2}} \qquad ... \quad(c)$
$(f\displaystyle \circ g)(1)=\frac{1}{(1+2)^{2}}=\frac{1}{9} \qquad ... \quad(a)$
$(g\circ f)(x)=g[f(x)]=[f(x)]+2$
$= \displaystyle \frac{1}{x^{2}}+2 \qquad ... \quad(d)$
$(g\displaystyle \circ f)(1)=\frac{1}{(1)^{2}}+2=3 \qquad ... \quad(b)$