Answer
See below
Work Step by Step
The standard form for the parabola is $\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$
We find $h=-2\\k=5$
Distance from the center to a vertex: $a=9-k=9-5=4$
Distance from the center to a co-vertex is: $b=0-h=0-(-2)=2$
Find $c^2=a^2-b^2\\c^2=4^2-2^2\\c^2=12$
We have an equation: $\frac{(x+2)^2}{4}+\frac{(y-5)^2}{16}=1$