Answer
See below
Work Step by Step
The standard form for the ellipse is $\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$
We find $h=1\\k=4$
Distance from the center to a vertex: $a=5-h=5-1=4$
Distance from the center to a focus is: $c=3-h=3-1=2$
Find $c^2=a^2-b^2\\2^2=4^2-b^2\\b^2=16-4=12$
We have an equation: $\frac{(x-1)^2}{16}+\frac{(y-4)^2}{12}=1$