Answer
(a) $v=\sqrt {2gh}$
(b) - Magnitude: $\frac{gh}{d}$
- Direction: upward.
Work Step by Step
(a) Assuming the positive direction be downward: $v_0=0$, $a=g$, $\Delta x=h$
$v^2=v_0^2+2a\Delta x$
$v^2=0^2+2gh$
$v=±\sqrt {2gh}$, but the glove moves downward (positive direction):
$v=\sqrt {2gh}$
(b) Now, the final velocity of the previous step is the initial velocity:
$v_0=\sqrt {2gh}$, $v=0$, $\Delta x=d$
$v^2=v_0^2+2a\Delta x$
$0^2=(\sqrt {2gh})^2+2ad$
$-2ad=2gh$
$a=\frac{2gh}{-2d}=-\frac{gh}{d}$
- Magnitude: $|a|=\frac{gh}{d}$
- Direction: upward