Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 55: 110

Answer

$9.0~m/s$

Work Step by Step

Let the positive direction be upward with origin at the initial position of the camera. - The passenger: constant velocity. $x_{0_p}=2.5~m$, $v_p=2.0~m/s$ $x_p=x_{0_p}+v_pt$ $x_p=2.5~m+(2.0~m/s)t$ - The camera: constant acceleration. $x_{0_c}=0$, $v_c=2.0~m/s$, $a=-g=-9.81~m/s^2$ $v_c=v_{0_c}+at$ $2.0~m/s=v_{0_c}+(-9.81~m/s^2)t$ $(9.81~m/s^2)t+2.0~m/s=v_{0_c}$ $x_c=x_{0_c}+v_{0_c}t+\frac{1}{2}at^2$ $x_c=0+[(9.81~m/s^2)t+2.0~m/s]t+\frac{1}{2}(-9.81~m/s^2)t^2$ $x_c=(2.0~m/s)t+(4.905~m/s^2)t^2$ When the camera reaches the passenger: $x_c=x_p$ $(2.0~m/s)t+(4.905~m/s^2)t^2=2.5~m+(2.0~m/s)t$ $(4.905~m/s^2)t^2=(2.5~m)$ $t=±\sqrt{\frac{2.5~m}{4.905~m/s^2}}$. The valid solulution is: $t=0.714~s$ $v_{0_c}=(9.81~m/s^2)t+2.0~m/s$. Make $t=0.714~s$: $v_{0_c}=(9.81~m/s^2)(0.714~s)+2.0~m/s$ $v_{0_c}=9.0~m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.