Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 55: 104

Answer

(a) $1.87~m/s$ (b) $1.02~m/s$

Work Step by Step

See conversion factors (inside front cover). $1~ft=0.305~m$ $20.5~ft=(20.5~ft)(\frac{0.305~m}{1~ft})=6.2525~m$ $6.00~ft=(6.00~ft)(\frac{0.305~m}{1~ft})=1.83~m$ First, we need to find the deceleration: make the positive direction the direction from the ball to the hole and the hole the origin. $v_0=1.57~m/s$, $v=0$, $x_0=-20.5~ft=-6.2525~m$, $x=-6.00~ft=-1.83~m$, $\Delta x=x-x_0=-1.83~m-(-6.2525~m)=4.4225~m$ $v^2=v_0^2+2a\Delta x$ $0^2=(1.57~m/s)^2+2a(4.4225~m)$ $a(-8.845~m)=2.4649~m^2/s^2$ $a=\frac{2.4649~m^2/s^2}{-8.845~m}=-0.2787~m/s^2$ (a) $v=0$, $x_0=-20.5~ft=-6.2525~m$, $x=0$, $\Delta x=x-x_0=0-(-6.2525~m)=6.2525~m$, $a=-0.2787~m/s^2$ $v^2=v_0^2+2a\Delta x$ $0^2=v_0^2+2(-0.2787~m/s^2)(6.2525~m)$ $v_0=±\sqrt {2(0.2787~m/s^2)(6.2525~m)}$ $v_0=1.87~m/s$ (positive direction) (b) To make the remaing $6.00~ft$ putt: $v=0$, $a=-0.2787~m/s^2$, $x_0=-6.00~ft=-1.83~m$, $x=0$, $\Delta x=x-x_0=0-(-1.83~m)=1.83~m$ $v^2=v_0^2+2a\Delta x$ $0^2=v_0^2+2(-0.2787~m/s^2)(1.83~m)$ $v_0=±\sqrt {2(0.2787~m/s^2)(1.83~m)}$ $v_0=1.02~m/s$ (positive direction)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.