Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 55: 106

Answer

(a) $12.86~m$ (b) $21.72~m$ (c) $30.58~m$ (d) $Separation=4~m+(8.86~m/s)t$

Work Step by Step

See the picture on page 41. The origin is at the bridge and the positive direction is downward. Now, let's find the velocity of the first rock after it has fallen $4~m$. $v_0=0$, $a=g=9.81~m/s^2$, $\Delta x=4~m$ $v^2=v_0^2+2a\Delta x$ $v^2=0^2+2(9.81~m/s^2)(4~m)$ $v=±\sqrt {2(9.81~m/s^2)(4~m)}$. The rock is moving downward (positive direction). $v=8.86~m/s$ Now, the second rock is dropped. Let's find the position as function of time for both rocks. The initial time is when the second rock is dropped. - Rock 1: $x_{0_1}=4~m$, $v_{0_1}=8.86~m/s$, $a=g=9.81~m/s^2$ $x_1=x_{0_1}+v_{0_1}t+\frac{1}{2}at^2$ $x_1=4~m+(8.86~m/s)t+\frac{1}{2}(9.81~m/s^2)t^2$ $x_1=4~m+(8.86~m/s)t+(4.905~m/s^2)t^2$ - Rock 2: $x_{0_2}=0$, $v_{0_2}=0$, $a=g=9.81~m/s^2$ $x_2=x_{0_2}+v_{0_2}t+\frac{1}{2}at^2$ $x_2=0+0t+\frac{1}{2}(9.81~m/s^2)t^2$ $x_2=(4.905~m/s^2)t^2$ (a) $t=1.0~s$ $x_1=4~m+(8.86~m/s)(1.0~s)+(4.905~m/s^2)(1.0~s)^2$ $x_1=17.765~m$ $x_2=(4.905~m/s^2)(1.0~s)^2=4.905~m$ $Separation=x_1-x_2=17.765~m-4.905~m=12.86~m$ (b) $t=2.0~s$ $x_1=4~m+(8.86~m/s)(2.0~s)+(4.905~m/s^2)(2.0~s)^2$ $x_1=41.34~m$ $x_2=(4.905~m/s^2)(3.0~s)^2=19.62~m$ $Separation=x_1-x_2=41.34~m-19.62~m=21.72~m$ (c) $t=3.0~s$ $x_1=4~m+(8.86~m/s)(3.0~s)+(4.905~m/s^2)(3.0~s)^2$ $x_1=74.725~m$ $x_2=(4.905~m/s^2)(3.0~s)^2=44.145~m$ $Separation=x_1-x_2=74.725~m-44.145~m=30.58~m$ (d) $Separation=x_1-x_2=4~m+(8.86~m/s)t+(4.905~m/s^2)t^2-(4.905~m/s^2)t^2=4~m+(8.86~m/s)t$ We conclude that the separation between the rocks increases linearly with time.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.