Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 55: 113

Answer

$h=0.0667~m=6.67~cm$

Work Step by Step

Let the positive direction be upward with origin at the ground. - First weight: $x_{0_1}=h$, $x_1=0$, $v_{0_1}=0$, $a=-g=-9.81~m/s^2$, $t_1=t$ $x_1=x_{0_1}+v_{0_1}t_1+\frac{1}{2}at_1^2$ $0=h+0t+\frac{1}{2}(-9.81~m/s^2)t^2$ $(4.905~m/s^2)t^2=h$ $t^2=\frac{h}{4.905~m/s^2}$ (equation 1) - Second weight: $x_{0_2}=h+20.0~cm=h+0.200~m$, $x_2=0$, $v_{0_2}=0$, $a=-g=-9.81~m/s^2$, $t_2=t+t=2t$ $x_2=x_{0_2}+v_{0_2}t_2+\frac{1}{2}at_2^2$ $0=(h+0.200~m)+0(2t)+\frac{1}{2}(-9.81~m/s^2)(2t)^2$ $(19.62~m/s^2)t^2=h+0.200~m$ $t^2=\frac{h+0.200~m}{19.62~m/s^2}$ (equation 2) Eliminating $t$: use equation 1 and equation 2: $\frac{h+0.200~m}{19.62~m/s^2}=\frac{h}{4.905~m/s^2}$ $h+0.200~m=\frac{19.62~m/s^2}{4.905~m/s^2}h$ $h+0.200~m=4h$ $0.200~m=3h$ $h=\frac{0.200~m}{3}=0.0667~m=6.67~cm$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.